Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Kernel-Based Identification of Local Limit Cycle Dynamics with Linear Periodically Parameter-Varying Models (2203.16306v2)

Published 30 Mar 2022 in eess.SY and cs.SY

Abstract: Limit cycle oscillations are phenomena arising in nonlinear dynamical systems and characterized by periodic, locally-stable, and self-sustained state trajectories. Systems controlled in a closed loop along a periodic trajectory can also be modelled as systems experiencing limit cycle behavior. The goal of this work is to identify from data, the local dynamics around the limit cycle using linear periodically parameter-varying models. Using a coordinate transformation onto transversal surfaces, the dynamics are decomposed into two parts: one along the limit cycle, and one on the transversal surfaces. Then, the model is identified from trajectory data using kernel-based methods with a periodic kernel design. The kernel-based model is extended to also account for variations in system parameters associated with different operating conditions. The performance of the proposed identification method is demonstrated on a benchmark nonlinear system and on a simplified airborne wind energy model. The method provides accurate model parameter estimation, compared to the analytical linearization, and good prediction capability.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.