Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DePA: Improving Non-autoregressive Machine Translation with Dependency-Aware Decoder (2203.16266v2)

Published 30 Mar 2022 in cs.CL

Abstract: Non-autoregressive machine translation (NAT) models have lower translation quality than autoregressive translation (AT) models because NAT decoders do not depend on previous target tokens in the decoder input. We propose a novel and general Dependency-Aware Decoder (DePA) to enhance target dependency modeling in the decoder of fully NAT models from two perspectives: decoder self-attention and decoder input. First, we propose an autoregressive forward-backward pre-training phase before NAT training, which enables the NAT decoder to gradually learn bidirectional target dependencies for the final NAT training. Second, we transform the decoder input from the source language representation space to the target language representation space through a novel attentive transformation process, which enables the decoder to better capture target dependencies. DePA can be applied to any fully NAT models. Extensive experiments show that DePA consistently improves highly competitive and state-of-the-art fully NAT models on widely used WMT and IWSLT benchmarks by up to 1.88 BLEU gain, while maintaining the inference latency comparable to other fully NAT models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.