Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A simple suboptimal moving horizon estimation scheme with guaranteed robust stability (2203.16090v2)

Published 30 Mar 2022 in eess.SY and cs.SY

Abstract: We propose a suboptimal moving horizon estimation (MHE) scheme for a general class of nonlinear systems. To this end, we consider an MHE formulation that optimizes over the trajectory of a robustly stable observer. Assuming that the observer admits a Lyapunov function, we show that this function is an M-step Lyapunov function for suboptimal MHE. The presented sufficient conditions can be easily verified in practice. We illustrate the practicability of the proposed suboptimal MHE scheme with a standard nonlinear benchmark example. Here, performing a single iteration is sufficient to significantly improve the observer's estimation results under valid theoretical guarantees.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube