Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Using Adapters to Overcome Catastrophic Forgetting in End-to-End Automatic Speech Recognition (2203.16082v3)

Published 30 Mar 2022 in eess.AS

Abstract: Learning a set of tasks in sequence remains a challenge for artificial neural networks, which, in such scenarios, tend to suffer from Catastrophic Forgetting (CF). The same applies to End-to-End (E2E) Automatic Speech Recognition (ASR) models, even for monolingual tasks. In this paper, we aim to overcome CF for E2E ASR by inserting adapters, small architectures of few parameters which allow a general model to be fine-tuned to a specific task, into our model. We make these adapters task-specific, while regularizing the parameters of the model shared by all tasks, thus stimulating the model to fully exploit the adapters while keeping the shared parameters to work well for all tasks. Our method outperforms all baselines on two monolingual experiments while being more storage efficient and without requiring the storage of data from previous tasks.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.