Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Using Adapters to Overcome Catastrophic Forgetting in End-to-End Automatic Speech Recognition (2203.16082v3)

Published 30 Mar 2022 in eess.AS

Abstract: Learning a set of tasks in sequence remains a challenge for artificial neural networks, which, in such scenarios, tend to suffer from Catastrophic Forgetting (CF). The same applies to End-to-End (E2E) Automatic Speech Recognition (ASR) models, even for monolingual tasks. In this paper, we aim to overcome CF for E2E ASR by inserting adapters, small architectures of few parameters which allow a general model to be fine-tuned to a specific task, into our model. We make these adapters task-specific, while regularizing the parameters of the model shared by all tasks, thus stimulating the model to fully exploit the adapters while keeping the shared parameters to work well for all tasks. Our method outperforms all baselines on two monolingual experiments while being more storage efficient and without requiring the storage of data from previous tasks.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.