Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Matrix Multiplication with Less Arithmetic Complexity and IO Complexity (2203.16053v1)

Published 30 Mar 2022 in cs.SC and cs.DM

Abstract: After Strassen presented the first sub-cubic matrix multiplication algorithm, many Strassen-like algorithms are presented. Most of them with low asymptotic cost have large hidden leading coefficient which are thus impractical. To reduce the leading coefficient, Cenk and Hasan give a general approach reducing the leading coefficient of $<2,2,2;7>$-algorithm to $5$ but increasing IO complexity. In 2017, Karstadt and Schwartz also reduce the leading coefficient of $<2,2,2;7>$-algorithm to $5$ by the Alternative Basis Matrix Multiplication method. Meanwhile, their method reduces the IO complexity and low-order monomials in arithmetic complexity. In 2019, Beniamini and Schwartz generalize Alternative Basis Matrix Multiplication method reducing leading coefficient in arithmetic complexity but increasing IO complexity. In this paper, we propose a new matrix multiplication algorithm which reduces leading coefficient both in arithmetic complexity and IO complexity. We apply our method to Strassen-like algorithms improving arithmetic complexity and IO complexity (the comparison with previous results are shown in Tables 1 and 2). Surprisingly, our IO complexity of $<3,3,3;23>$-algorithm is $14n{\log_323}M{-\frac{1}{2}} + o(n{\log_323})$ which breaks Ballard's IO complexity low bound ($\Omega(n{\log_323}M{1-\frac{\log_323}{2}})$) for recursive Strassen-like algorithms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.