Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Matrix Multiplication with Less Arithmetic Complexity and IO Complexity (2203.16053v1)

Published 30 Mar 2022 in cs.SC and cs.DM

Abstract: After Strassen presented the first sub-cubic matrix multiplication algorithm, many Strassen-like algorithms are presented. Most of them with low asymptotic cost have large hidden leading coefficient which are thus impractical. To reduce the leading coefficient, Cenk and Hasan give a general approach reducing the leading coefficient of $<2,2,2;7>$-algorithm to $5$ but increasing IO complexity. In 2017, Karstadt and Schwartz also reduce the leading coefficient of $<2,2,2;7>$-algorithm to $5$ by the Alternative Basis Matrix Multiplication method. Meanwhile, their method reduces the IO complexity and low-order monomials in arithmetic complexity. In 2019, Beniamini and Schwartz generalize Alternative Basis Matrix Multiplication method reducing leading coefficient in arithmetic complexity but increasing IO complexity. In this paper, we propose a new matrix multiplication algorithm which reduces leading coefficient both in arithmetic complexity and IO complexity. We apply our method to Strassen-like algorithms improving arithmetic complexity and IO complexity (the comparison with previous results are shown in Tables 1 and 2). Surprisingly, our IO complexity of $<3,3,3;23>$-algorithm is $14n{\log_323}M{-\frac{1}{2}} + o(n{\log_323})$ which breaks Ballard's IO complexity low bound ($\Omega(n{\log_323}M{1-\frac{\log_323}{2}})$) for recursive Strassen-like algorithms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.