Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix Multiplication with Less Arithmetic Complexity and IO Complexity (2203.16053v1)

Published 30 Mar 2022 in cs.SC and cs.DM

Abstract: After Strassen presented the first sub-cubic matrix multiplication algorithm, many Strassen-like algorithms are presented. Most of them with low asymptotic cost have large hidden leading coefficient which are thus impractical. To reduce the leading coefficient, Cenk and Hasan give a general approach reducing the leading coefficient of $<2,2,2;7>$-algorithm to $5$ but increasing IO complexity. In 2017, Karstadt and Schwartz also reduce the leading coefficient of $<2,2,2;7>$-algorithm to $5$ by the Alternative Basis Matrix Multiplication method. Meanwhile, their method reduces the IO complexity and low-order monomials in arithmetic complexity. In 2019, Beniamini and Schwartz generalize Alternative Basis Matrix Multiplication method reducing leading coefficient in arithmetic complexity but increasing IO complexity. In this paper, we propose a new matrix multiplication algorithm which reduces leading coefficient both in arithmetic complexity and IO complexity. We apply our method to Strassen-like algorithms improving arithmetic complexity and IO complexity (the comparison with previous results are shown in Tables 1 and 2). Surprisingly, our IO complexity of $<3,3,3;23>$-algorithm is $14n{\log_323}M{-\frac{1}{2}} + o(n{\log_323})$ which breaks Ballard's IO complexity low bound ($\Omega(n{\log_323}M{1-\frac{\log_323}{2}})$) for recursive Strassen-like algorithms.

Summary

We haven't generated a summary for this paper yet.