Supervised Graph Contrastive Learning for Few-shot Node Classification (2203.15936v4)
Abstract: Graphs are present in many real-world applications, such as financial fraud detection, commercial recommendation, and social network analysis. But given the high cost of graph annotation or labeling, we face a severe graph label-scarcity problem, i.e., a graph might have a few labeled nodes. One example of such a problem is the so-called \textit{few-shot node classification}. A predominant approach to this problem resorts to \textit{episodic meta-learning}. In this work, we challenge the status quo by asking a fundamental question whether meta-learning is a must for few-shot node classification tasks. We propose a new and simple framework under the standard few-shot node classification setting as an alternative to meta-learning to learn an effective graph encoder. The framework consists of supervised graph contrastive learning with novel mechanisms for data augmentation, subgraph encoding, and multi-scale contrast on graphs. Extensive experiments on three benchmark datasets (CoraFull, Reddit, Ogbn) show that the new framework significantly outperforms state-of-the-art meta-learning based methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.