Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Shift-Robust Node Classification via Graph Adversarial Clustering (2203.15802v1)

Published 7 Mar 2022 in cs.LG

Abstract: Graph Neural Networks (GNNs) are de facto node classification models in graph structured data. However, during testing-time, these algorithms assume no data shift, i.e., $\Pr_\text{train}(X,Y) = \Pr_\text{test}(X,Y)$. Domain adaption methods can be adopted for data shift, yet most of them are designed to only encourage similar feature distribution between source and target data. Conditional shift on classes can still affect such adaption. Fortunately, graph yields graph homophily across different data distributions. In response, we propose Shift-Robust Node Classification (SRNC) to address these limitations. We introduce an unsupervised cluster GNN on target graph to group the similar nodes by graph homophily. An adversarial loss with label information on source graph is used upon clustering objective. Then a shift-robust classifier is optimized on training graph and adversarial samples on target graph, which are generated by cluster GNN. We conduct experiments on both open-set shift and representation-shift, which demonstrates the superior accuracy of SRNC on generalizing to test graph with data shift. SRNC is consistently better than previous SoTA domain adaption algorithm on graph that progressively use model predictions on target graph for training.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.