Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Nearly Minimax Algorithms for Linear Bandits with Shared Representation (2203.15664v1)

Published 29 Mar 2022 in cs.LG and stat.ML

Abstract: We give novel algorithms for multi-task and lifelong linear bandits with shared representation. Specifically, we consider the setting where we play $M$ linear bandits with dimension $d$, each for $T$ rounds, and these $M$ bandit tasks share a common $k(\ll d)$ dimensional linear representation. For both the multi-task setting where we play the tasks concurrently, and the lifelong setting where we play tasks sequentially, we come up with novel algorithms that achieve $\widetilde{O}\left(d\sqrt{kMT} + kM\sqrt{T}\right)$ regret bounds, which matches the known minimax regret lower bound up to logarithmic factors and closes the gap in existing results [Yang et al., 2021]. Our main technique include a more efficient estimator for the low-rank linear feature extractor and an accompanied novel analysis for this estimator.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.