Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

NL-FCOS: Improving FCOS through Non-Local Modules for Object Detection (2203.15638v1)

Published 29 Mar 2022 in cs.CV

Abstract: During the last years, we have seen significant advances in the object detection task, mainly due to the outperforming results of convolutional neural networks. In this vein, anchor-based models have achieved the best results. However, these models require prior information about the aspect and scales of target objects, needing more hyperparameters to fit. In addition, using anchors to fit bounding boxes seems far from how our visual system does the same visual task. Instead, our visual system uses the interactions of different scene parts to semantically identify objects, called perceptual grouping. An object detection methodology closer to the natural model is anchor-free detection, where models like FCOS or Centernet have shown competitive results, but these have not yet exploited the concept of perceptual grouping. Therefore, to increase the effectiveness of anchor-free models keeping the inference time low, we propose to add non-local attention (NL modules) modules to boost the feature map of the underlying backbone. NL modules implement the perceptual grouping mechanism, allowing receptive fields to cooperate in visual representation learning. We show that non-local modules combined with an FCOS head (NL-FCOS) are practical and efficient. Thus, we establish state-of-the-art performance in clothing detection and handwritten amount recognition problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube