Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improving Contrastive Learning with Model Augmentation (2203.15508v1)

Published 25 Mar 2022 in cs.LG, cs.AI, and cs.IR

Abstract: The sequential recommendation aims at predicting the next items in user behaviors, which can be solved by characterizing item relationships in sequences. Due to the data sparsity and noise issues in sequences, a new self-supervised learning (SSL) paradigm is proposed to improve the performance, which employs contrastive learning between positive and negative views of sequences. However, existing methods all construct views by adopting augmentation from data perspectives, while we argue that 1) optimal data augmentation methods are hard to devise, 2) data augmentation methods destroy sequential correlations, and 3) data augmentation fails to incorporate comprehensive self-supervised signals. Therefore, we investigate the possibility of model augmentation to construct view pairs. We propose three levels of model augmentation methods: neuron masking, layer dropping, and encoder complementing. This work opens up a novel direction in constructing views for contrastive SSL. Experiments verify the efficacy of model augmentation for the SSL in the sequential recommendation. Code is available\footnote{\url{https://github.com/salesforce/SRMA}}.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com