Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quantifying Societal Bias Amplification in Image Captioning (2203.15395v1)

Published 29 Mar 2022 in cs.CV and cs.MM

Abstract: We study societal bias amplification in image captioning. Image captioning models have been shown to perpetuate gender and racial biases, however, metrics to measure, quantify, and evaluate the societal bias in captions are not yet standardized. We provide a comprehensive study on the strengths and limitations of each metric, and propose LIC, a metric to study captioning bias amplification. We argue that, for image captioning, it is not enough to focus on the correct prediction of the protected attribute, and the whole context should be taken into account. We conduct extensive evaluation on traditional and state-of-the-art image captioning models, and surprisingly find that, by only focusing on the protected attribute prediction, bias mitigation models are unexpectedly amplifying bias.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.