Papers
Topics
Authors
Recent
2000 character limit reached

Self-Supervised Image Representation Learning with Geometric Set Consistency (2203.15361v1)

Published 29 Mar 2022 in cs.CV

Abstract: We propose a method for self-supervised image representation learning under the guidance of 3D geometric consistency. Our intuition is that 3D geometric consistency priors such as smooth regions and surface discontinuities may imply consistent semantics or object boundaries, and can act as strong cues to guide the learning of 2D image representations without semantic labels. Specifically, we introduce 3D geometric consistency into a contrastive learning framework to enforce the feature consistency within image views. We propose to use geometric consistency sets as constraints and adapt the InfoNCE loss accordingly. We show that our learned image representations are general. By fine-tuning our pre-trained representations for various 2D image-based downstream tasks, including semantic segmentation, object detection, and instance segmentation on real-world indoor scene datasets, we achieve superior performance compared with state-of-the-art methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.