Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Frequency Dynamic Convolution: Frequency-Adaptive Pattern Recognition for Sound Event Detection (2203.15296v2)

Published 29 Mar 2022 in eess.AS

Abstract: 2D convolution is widely used in sound event detection (SED) to recognize two dimensional time-frequency patterns of sound events. However, 2D convolution enforces translation equivariance on sound events along both time and frequency axis while frequency is not shift-invariant dimension. In order to improve physical consistency of 2D convolution on SED, we propose frequency dynamic convolution which applies kernel that adapts to frequency components of input. Frequency dynamic convolution outperforms the baseline by 6.3% in DESED validation dataset in terms of polyphonic sound detection score (PSDS). It also significantly outperforms other pre-existing content-adaptive methods on SED. In addition, by comparing class-wise F1 scores of baseline and frequency dynamic convolution, we showed that frequency dynamic convolution is especially more effective for detection of non-stationary sound events with intricate time-frequency patterns. From this result, we verified that frequency dynamic convolution is superior in recognizing frequency-dependent patterns.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.