Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Accelerating Code Search with Deep Hashing and Code Classification (2203.15287v2)

Published 29 Mar 2022 in cs.SE and cs.AI

Abstract: Code search is to search reusable code snippets from source code corpus based on natural languages queries. Deep learning-based methods of code search have shown promising results. However, previous methods focus on retrieval accuracy but lacked attention to the efficiency of the retrieval process. We propose a novel method CoSHC to accelerate code search with deep hashing and code classification, aiming to perform an efficient code search without sacrificing too much accuracy. To evaluate the effectiveness of CoSHC, we apply our method to five code search models. Extensive experimental results indicate that compared with previous code search baselines, CoSHC can save more than 90% of retrieval time meanwhile preserving at least 99% of retrieval accuracy.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.