Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mel Frequency Spectral Domain Defenses against Adversarial Attacks on Speech Recognition Systems (2203.15283v1)

Published 29 Mar 2022 in eess.AS and cs.LG

Abstract: A variety of recent works have looked into defenses for deep neural networks against adversarial attacks particularly within the image processing domain. Speech processing applications such as automatic speech recognition (ASR) are increasingly relying on deep learning models, and so are also prone to adversarial attacks. However, many of the defenses explored for ASR simply adapt the image-domain defenses, which may not provide optimal robustness. This paper explores speech specific defenses using the mel spectral domain, and introduces a novel defense method called 'mel domain noise flooding' (MDNF). MDNF applies additive noise to the mel spectrogram of a speech utterance prior to re-synthesising the audio signal. We test the defenses against strong white-box adversarial attacks such as projected gradient descent (PGD) and Carlini-Wagner (CW) attacks, and show better robustness compared to a randomized smoothing baseline across strong threat models.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.