Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improving Generalization of Deep Neural Network Acoustic Models with Length Perturbation and N-best Based Label Smoothing (2203.15176v1)

Published 29 Mar 2022 in cs.CL, cs.SD, and eess.AS

Abstract: We introduce two techniques, length perturbation and n-best based label smoothing, to improve generalization of deep neural network (DNN) acoustic models for automatic speech recognition (ASR). Length perturbation is a data augmentation algorithm that randomly drops and inserts frames of an utterance to alter the length of the speech feature sequence. N-best based label smoothing randomly injects noise to ground truth labels during training in order to avoid overfitting, where the noisy labels are generated from n-best hypotheses. We evaluate these two techniques extensively on the 300-hour Switchboard (SWB300) dataset and an in-house 500-hour Japanese (JPN500) dataset using recurrent neural network transducer (RNNT) acoustic models for ASR. We show that both techniques improve the generalization of RNNT models individually and they can also be complementary. In particular, they yield good improvements over a strong SWB300 baseline and give state-of-art performance on SWB300 using RNNT models.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.