Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Federated Named Entity Recognition (2203.15101v1)

Published 28 Mar 2022 in cs.CL and cs.AI

Abstract: We present an analysis of the performance of Federated Learning in a paradigmatic natural-language processing task: Named-Entity Recognition (NER). For our evaluation, we use the language-independent CoNLL-2003 dataset as our benchmark dataset and a Bi-LSTM-CRF model as our benchmark NER model. We show that federated training reaches almost the same performance as the centralized model, though with some performance degradation as the learning environments become more heterogeneous. We also show the convergence rate of federated models for NER. Finally, we discuss existing challenges of Federated Learning for NLP applications that can foster future research directions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube