Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved singing voice separation with chromagram-based pitch-aware remixing (2203.15092v1)

Published 28 Mar 2022 in eess.AS, cs.LG, and cs.SD

Abstract: Singing voice separation aims to separate music into vocals and accompaniment components. One of the major constraints for the task is the limited amount of training data with separated vocals. Data augmentation techniques such as random source mixing have been shown to make better use of existing data and mildly improve model performance. We propose a novel data augmentation technique, chromagram-based pitch-aware remixing, where music segments with high pitch alignment are mixed. By performing controlled experiments in both supervised and semi-supervised settings, we demonstrate that training models with pitch-aware remixing significantly improves the test signal-to-distortion ratio (SDR)

Citations (10)

Summary

We haven't generated a summary for this paper yet.