Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Analyzing Language-Independent Speaker Anonymization Framework under Unseen Conditions (2203.14834v1)

Published 28 Mar 2022 in cs.SD

Abstract: In our previous work, we proposed a language-independent speaker anonymization system based on self-supervised learning models. Although the system can anonymize speech data of any language, the anonymization was imperfect, and the speech content of the anonymized speech was distorted. This limitation is more severe when the input speech is from a domain unseen in the training data. This study analyzed the bottleneck of the anonymization system under unseen conditions. It was found that the domain (e.g., language and channel) mismatch between the training and test data affected the neural waveform vocoder and anonymized speaker vectors, which limited the performance of the whole system. Increasing the training data diversity for the vocoder was found to be helpful to reduce its implicit language and channel dependency. Furthermore, a simple correlation-alignment-based domain adaption strategy was found to be significantly effective to alleviate the mismatch on the anonymized speaker vectors. Audio samples and source code are available online.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com