Partially Does It: Towards Scene-Level FG-SBIR with Partial Input (2203.14804v1)
Abstract: We scrutinise an important observation plaguing scene-level sketch research -- that a significant portion of scene sketches are "partial". A quick pilot study reveals: (i) a scene sketch does not necessarily contain all objects in the corresponding photo, due to the subjective holistic interpretation of scenes, (ii) there exists significant empty (white) regions as a result of object-level abstraction, and as a result, (iii) existing scene-level fine-grained sketch-based image retrieval methods collapse as scene sketches become more partial. To solve this "partial" problem, we advocate for a simple set-based approach using optimal transport (OT) to model cross-modal region associativity in a partially-aware fashion. Importantly, we improve upon OT to further account for holistic partialness by comparing intra-modal adjacency matrices. Our proposed method is not only robust to partial scene-sketches but also yields state-of-the-art performance on existing datasets.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.