Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

MSTR: Multi-Scale Transformer for End-to-End Human-Object Interaction Detection (2203.14709v1)

Published 28 Mar 2022 in cs.CV

Abstract: Human-Object Interaction (HOI) detection is the task of identifying a set of <human, object, interaction> triplets from an image. Recent work proposed transformer encoder-decoder architectures that successfully eliminated the need for many hand-designed components in HOI detection through end-to-end training. However, they are limited to single-scale feature resolution, providing suboptimal performance in scenes containing humans, objects and their interactions with vastly different scales and distances. To tackle this problem, we propose a Multi-Scale TRansformer (MSTR) for HOI detection powered by two novel HOI-aware deformable attention modules called Dual-Entity attention and Entity-conditioned Context attention. While existing deformable attention comes at a huge cost in HOI detection performance, our proposed attention modules of MSTR learn to effectively attend to sampling points that are essential to identify interactions. In experiments, we achieve the new state-of-the-art performance on two HOI detection benchmarks.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.