Papers
Topics
Authors
Recent
2000 character limit reached

Subjective Evaluation of Deep Learning Models for Symbolic Music Composition (2203.14641v2)

Published 28 Mar 2022 in cs.SD and cs.AI

Abstract: Deep learning models are typically evaluated to measure and compare their performance on a given task. The metrics that are commonly used to evaluate these models are standard metrics that are used for different tasks. In the field of music composition or generation, the standard metrics used in other fields have no clear meaning in terms of music theory. In this paper, we propose a subjective method to evaluate AI-based music composition systems by asking questions related to basic music principles to different levels of users based on their musical experience and knowledge. We use this method to compare state-of-the-art models for music composition with deep learning. We give the results of this evaluation method and we compare the responses of each user level for each evaluated model.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.