Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On-the-Fly Feature Based Rapid Speaker Adaptation for Dysarthric and Elderly Speech Recognition (2203.14593v3)

Published 28 Mar 2022 in eess.AS, cs.AI, cs.LG, and cs.SD

Abstract: Accurate recognition of dysarthric and elderly speech remain challenging tasks to date. Speaker-level heterogeneity attributed to accent or gender, when aggregated with age and speech impairment, create large diversity among these speakers. Scarcity of speaker-level data limits the practical use of data-intensive model based speaker adaptation methods. To this end, this paper proposes two novel forms of data-efficient, feature-based on-the-fly speaker adaptation methods: variance-regularized spectral basis embedding (SVR) and spectral feature driven f-LHUC transforms. Experiments conducted on UASpeech dysarthric and DementiaBank Pitt elderly speech corpora suggest the proposed on-the-fly speaker adaptation approaches consistently outperform baseline iVector adapted hybrid DNN/TDNN and E2E Conformer systems by statistically significant WER reduction of 2.48%-2.85% absolute (7.92%-8.06% relative), and offline model based LHUC adaptation by 1.82% absolute (5.63% relative) respectively.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube