Detection threshold for correlated Erdős-Rényi graphs via densest subgraphs (2203.14573v2)
Abstract: The problem of detecting edge correlation between two Erd\H{o}s-R\'enyi random graphs on $n$ unlabeled nodes can be formulated as a hypothesis testing problem: under the null hypothesis, the two graphs are sampled independently; under the alternative, the two graphs are independently sub-sampled from a parent graph which is Erd\H{o}s-R\'enyi $\mathbf{G}(n, p)$ (so that their marginal distributions are the same as the null). We establish a sharp information-theoretic threshold when $p = n{-\alpha+o(1)}$ for $\alpha\in (0, 1]$ which sharpens a constant factor in a recent work by Wu, Xu and Yu. A key novelty in our work is an interesting connection between the detection problem and the densest subgraph of an Erd\H{o}s-R\'enyi graph.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.