Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Conjugate Gradient Method for Generative Adversarial Networks (2203.14495v3)

Published 28 Mar 2022 in cs.LG, cs.CV, and math.OC

Abstract: One of the training strategies of generative models is to minimize the Jensen--Shannon divergence between the model distribution and the data distribution. Since data distribution is unknown, generative adversarial networks (GANs) formulate this problem as a game between two models, a generator and a discriminator. The training can be formulated in the context of game theory and the local Nash equilibrium (LNE). It does not seem feasible to derive guarantees of stability or optimality for the existing methods. This optimization problem is far more challenging than the single objective setting. Here, we use the conjugate gradient method to reliably and efficiently solve the LNE problem in GANs. We give a proof and convergence analysis under mild assumptions showing that the proposed method converges to a LNE with three different learning rate update rules, including a constant learning rate. Finally, we demonstrate that the proposed method outperforms stochastic gradient descent (SGD) and momentum SGD in terms of best Frechet inception distance (FID) score and outperforms Adam on average. The code is available at \url{https://github.com/Hiroki11x/ConjugateGradient_GAN}.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.