Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Structured Local Radiance Fields for Human Avatar Modeling (2203.14478v1)

Published 28 Mar 2022 in cs.CV

Abstract: It is extremely challenging to create an animatable clothed human avatar from RGB videos, especially for loose clothes due to the difficulties in motion modeling. To address this problem, we introduce a novel representation on the basis of recent neural scene rendering techniques. The core of our representation is a set of structured local radiance fields, which are anchored to the pre-defined nodes sampled on a statistical human body template. These local radiance fields not only leverage the flexibility of implicit representation in shape and appearance modeling, but also factorize cloth deformations into skeleton motions, node residual translations and the dynamic detail variations inside each individual radiance field. To learn our representation from RGB data and facilitate pose generalization, we propose to learn the node translations and the detail variations in a conditional generative latent space. Overall, our method enables automatic construction of animatable human avatars for various types of clothes without the need for scanning subject-specific templates, and can generate realistic images with dynamic details for novel poses. Experiment show that our method outperforms state-of-the-art methods both qualitatively and quantitatively.

Citations (104)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.