Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Physics Guided Deep Learning for Generative Design of Crystal Materials with Symmetry Constraints (2203.14352v3)

Published 27 Mar 2022 in cond-mat.mtrl-sci and cs.LG

Abstract: Discovering new materials is a challenging task in materials science crucial to the progress of human society. Conventional approaches based on experiments and simulations are labor-intensive or costly with success heavily depending on experts' heuristic knowledge. Here, we propose a deep learning based Physics Guided Crystal Generative Model (PGCGM) for efficient crystal material design with high structural diversity and symmetry. Our model increases the generation validity by more than 700\% compared to FTCP, one of the latest structure generators and by more than 45\% compared to our previous CubicGAN model. Density Functional Theory (DFT) calculations are used to validate the generated structures with 1,869 materials out of 2,000 are successfully optimized and deposited into the Carolina Materials Database \url{www.carolinamatdb.org}, of which 39.6\% have negative formation energy and 5.3\% have energy-above-hull less than 0.25 eV/atom, indicating their thermodynamic stability and potential synthesizability.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.