Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MutexMatch: Semi-Supervised Learning with Mutex-Based Consistency Regularization (2203.14316v2)

Published 27 Mar 2022 in cs.CV and cs.LG

Abstract: The core issue in semi-supervised learning (SSL) lies in how to effectively leverage unlabeled data, whereas most existing methods tend to put a great emphasis on the utilization of high-confidence samples yet seldom fully explore the usage of low-confidence samples. In this paper, we aim to utilize low-confidence samples in a novel way with our proposed mutex-based consistency regularization, namely MutexMatch. Specifically, the high-confidence samples are required to exactly predict "what it is" by conventional True-Positive Classifier, while the low-confidence samples are employed to achieve a simpler goal -- to predict with ease "what it is not" by True-Negative Classifier. In this sense, we not only mitigate the pseudo-labeling errors but also make full use of the low-confidence unlabeled data by consistency of dissimilarity degree. MutexMatch achieves superior performance on multiple benchmark datasets, i.e., CIFAR-10, CIFAR-100, SVHN, STL-10, mini-ImageNet and Tiny-ImageNet. More importantly, our method further shows superiority when the amount of labeled data is scarce, e.g., 92.23% accuracy with only 20 labeled data on CIFAR-10. Our code and model weights have been released at https://github.com/NJUyued/MutexMatch4SSL.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.