bitsa_nlp@LT-EDI-ACL2022: Leveraging Pretrained Language Models for Detecting Homophobia and Transphobia in Social Media Comments (2203.14267v2)
Abstract: Online social networks are ubiquitous and user-friendly. Nevertheless, it is vital to detect and moderate offensive content to maintain decency and empathy. However, mining social media texts is a complex task since users don't adhere to any fixed patterns. Comments can be written in any combination of languages and many of them may be low-resource. In this paper, we present our system for the LT-EDI shared task on detecting homophobia and transphobia in social media comments. We experiment with a number of monolingual and multilingual transformer based models such as mBERT along with a data augmentation technique for tackling class imbalance. Such pretrained large models have recently shown tremendous success on a variety of benchmark tasks in natural language processing. We observe their performance on a carefully annotated, real life dataset of YouTube comments in English as well as Tamil. Our submission achieved ranks 9, 6 and 3 with a macro-averaged F1-score of 0.42, 0.64 and 0.58 in the English, Tamil and Tamil-English subtasks respectively. The code for the system has been open sourced.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.