Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Severe is Benchmark-Sensitivity in Video Self-Supervised Learning? (2203.14221v2)

Published 27 Mar 2022 in cs.CV

Abstract: Despite the recent success of video self-supervised learning models, there is much still to be understood about their generalization capability. In this paper, we investigate how sensitive video self-supervised learning is to the current conventional benchmark and whether methods generalize beyond the canonical evaluation setting. We do this across four different factors of sensitivity: domain, samples, actions and task. Our study which encompasses over 500 experiments on 7 video datasets, 9 self-supervised methods and 6 video understanding tasks, reveals that current benchmarks in video self-supervised learning are not good indicators of generalization along these sensitivity factors. Further, we find that self-supervised methods considerably lag behind vanilla supervised pre-training, especially when domain shift is large and the amount of available downstream samples are low. From our analysis, we distill the SEVERE-benchmark, a subset of our experiments, and discuss its implication for evaluating the generalizability of representations obtained by existing and future self-supervised video learning methods.

Citations (15)

Summary

We haven't generated a summary for this paper yet.