Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

RGBD Object Tracking: An In-depth Review (2203.14134v1)

Published 26 Mar 2022 in cs.CV

Abstract: RGBD object tracking is gaining momentum in computer vision research thanks to the development of depth sensors. Although numerous RGBD trackers have been proposed with promising performance, an in-depth review for comprehensive understanding of this area is lacking. In this paper, we firstly review RGBD object trackers from different perspectives, including RGBD fusion, depth usage, and tracking framework. Then, we summarize the existing datasets and the evaluation metrics. We benchmark a representative set of RGBD trackers, and give detailed analyses based on their performances. Particularly, we are the first to provide depth quality evaluation and analysis of tracking results in depth-friendly scenarios in RGBD tracking. For long-term settings in most RGBD tracking videos, we give an analysis of trackers' performance on handling target disappearance. To enable better understanding of RGBD trackers, we propose robustness evaluation against input perturbations. Finally, we summarize the challenges and provide open directions for this community. All resources are publicly available at https://github.com/memoryunreal/RGBD-tracking-review.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com