Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Remix-cycle-consistent Learning on Adversarially Learned Separator for Accurate and Stable Unsupervised Speech Separation (2203.14080v1)

Published 26 Mar 2022 in eess.AS and cs.SD

Abstract: A new learning algorithm for speech separation networks is designed to explicitly reduce residual noise and artifacts in the separated signal in an unsupervised manner. Generative adversarial networks are known to be effective in constructing separation networks when the ground truth for the observed signal is inaccessible. Still, weak objectives aimed at distribution-to-distribution mapping make the learning unstable and limit their performance. This study introduces the remix-cycle-consistency loss as a more appropriate objective function and uses it to fine-tune adversarially learned source separation models. The remix-cycle-consistency loss is defined as the difference between the mixed speech observed at microphones and the pseudo-mixed speech obtained by alternating the process of separating the mixed sound and remixing its outputs with another combination. The minimization of this loss leads to an explicit reduction in the distortions in the output of the separation network. Experimental comparisons with multichannel speech separation demonstrated that the proposed method achieved high separation accuracy and learning stability comparable to supervised learning.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.