Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Quantum continual learning of quantum data realizing knowledge backward transfer (2203.14032v2)

Published 26 Mar 2022 in quant-ph and cs.LG

Abstract: For the goal of strong artificial intelligence that can mimic human-level intelligence, AI systems would have the ability to adapt to ever-changing scenarios and learn new knowledge continuously without forgetting previously acquired knowledge. When a machine learning model is consecutively trained on multiple tasks that come in sequence, its performance on previously learned tasks may drop dramatically during the learning process of the newly seen task. To avoid this phenomenon termed catastrophic forgetting, continual learning, also known as lifelong learning, has been proposed and become one of the most up-to-date research areas of machine learning. As quantum machine learning blossoms in recent years, it is interesting to develop quantum continual learning. This paper focuses on the case of quantum models for quantum data where the computation model and the data to be processed are both quantum. The gradient episodic memory method is incorporated to design a quantum continual learning scheme that overcomes catastrophic forgetting and realizes knowledge backward transfer. Specifically, a sequence of quantum state classification tasks is continually learned by a variational quantum classifier whose parameters are optimized by a classical gradient-based optimizer. The gradient of the current task is projected to the closest gradient, avoiding the increase of the loss at previous tasks, but allowing the decrease. Numerical simulation results show that our scheme not only overcomes catastrophic forgetting, but also realize knowledge backward transfer, which means the classifier's performance on previous tasks is enhanced rather than compromised while learning a new task.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube