Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Concept Embedding Analysis: A Review (2203.13909v1)

Published 25 Mar 2022 in cs.LG, cs.AI, cs.CV, and stat.ML

Abstract: Deep neural networks (DNNs) have found their way into many applications with potential impact on the safety, security, and fairness of human-machine-systems. Such require basic understanding and sufficient trust by the users. This motivated the research field of explainable artificial intelligence (XAI), i.e. finding methods for opening the "black-boxes" DNNs represent. For the computer vision domain in specific, practical assessment of DNNs requires a globally valid association of human interpretable concepts with internals of the model. The research field of concept (embedding) analysis (CA) tackles this problem: CA aims to find global, assessable associations of humanly interpretable semantic concepts (e.g., eye, bearded) with internal representations of a DNN. This work establishes a general definition of CA and a taxonomy for CA methods, uniting several ideas from literature. That allows to easily position and compare CA approaches. Guided by the defined notions, the current state-of-the-art research regarding CA methods and interesting applications are reviewed. More than thirty relevant methods are discussed, compared, and categorized. Finally, for practitioners, a survey of fifteen datasets is provided that have been used for supervised concept analysis. Open challenges and research directions are pointed out at the end.

Citations (23)

Summary

We haven't generated a summary for this paper yet.