Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Anchoring Code Understandability Evaluations Through Task Descriptions (2203.13705v1)

Published 25 Mar 2022 in cs.SE and cs.HC

Abstract: In code comprehension experiments, participants are usually told at the beginning what kind of code comprehension task to expect. Describing experiment scenarios and experimental tasks will influence participants in ways that are sometimes hard to predict and control. In particular, describing or even mentioning the difficulty of a code comprehension task might anchor participants and their perception of the task itself. In this study, we investigated in a randomized, controlled experiment with 256 participants (50 software professionals and 206 computer science students) whether a hint about the difficulty of the code to be understood in a task description anchors participants in their own code comprehensibility ratings. Subjective code evaluations are a commonly used measure for how well a developer in a code comprehension study understood code. Accordingly, it is important to understand how robust these measures are to cognitive biases such as the anchoring effect. Our results show that participants are significantly influenced by the initial scenario description in their assessment of code comprehensibility. An initial hint of hard to understand code leads participants to assess the code as harder to understand than participants who received no hint or a hint of easy to understand code. This affects students and professionals alike. We discuss examples of design decisions and contextual factors in the conduct of code comprehension experiments that can induce an anchoring effect, and recommend the use of more robust comprehension measures in code comprehension studies to enhance the validity of results.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com