Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Noisy Boundaries: Lemon or Lemonade for Semi-supervised Instance Segmentation? (2203.13427v1)

Published 25 Mar 2022 in cs.CV

Abstract: Current instance segmentation methods rely heavily on pixel-level annotated images. The huge cost to obtain such fully-annotated images restricts the dataset scale and limits the performance. In this paper, we formally address semi-supervised instance segmentation, where unlabeled images are employed to boost the performance. We construct a framework for semi-supervised instance segmentation by assigning pixel-level pseudo labels. Under this framework, we point out that noisy boundaries associated with pseudo labels are double-edged. We propose to exploit and resist them in a unified manner simultaneously: 1) To combat the negative effects of noisy boundaries, we propose a noise-tolerant mask head by leveraging low-resolution features. 2) To enhance the positive impacts, we introduce a boundary-preserving map for learning detailed information within boundary-relevant regions. We evaluate our approach by extensive experiments. It behaves extraordinarily, outperforming the supervised baseline by a large margin, more than 6% on Cityscapes, 7% on COCO and 4.5% on BDD100k. On Cityscapes, our method achieves comparable performance by utilizing only 30% labeled images.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.