Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Kullback-Leibler divergence between pairwise isotropic Gaussian-Markov random fields

Published 24 Mar 2022 in cs.IT, math.IT, nlin.AO, physics.data-an, and stat.ML | (2203.13164v1)

Abstract: The Kullback-Leibler divergence or relative entropy is an information-theoretic measure between statistical models that play an important role in measuring a distance between random variables. In the study of complex systems, random fields are mathematical structures that models the interaction between these variables by means of an inverse temperature parameter, responsible for controlling the spatial dependence structure along the field. In this paper, we derive closed-form expressions for the Kullback-Leibler divergence between two pairwise isotropic Gaussian-Markov random fields in both univariate and multivariate cases. The proposed equation allows the development of novel similarity measures in image processing and machine learning applications, such as image denoising and unsupervised metric learning.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.