Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Size-based scheduling vs fairness for datacenter flows: a queuing perspective (2203.12983v1)

Published 24 Mar 2022 in cs.NI, cs.DC, and cs.PF

Abstract: Contrary to the conclusions of a recent body of work where approximate shortest remaining processing time first (SRPT) flow scheduling is advocated for datacenter networks, this paper aims to demonstrate that per-flow fairness remains a preferable objective. We evaluate abstract queuing models by analysis and simulation to illustrate the non-optimality of SRPT under the reasonable assumptions that datacenter flows occur in batches and bursts and not, as usually assumed, individually at the instants of a Poisson process. Results for these models have significant implications for the design of bandwidth sharing strategies for datacenter networks. In particular, we propose a novel "virtual fair scheduling" algorithm that enforces fairness between batches and is arguably simple enough to be implemented in high speed devices.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.