Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Horizon-Free Reinforcement Learning in Polynomial Time: the Power of Stationary Policies (2203.12922v2)

Published 24 Mar 2022 in cs.LG

Abstract: This paper gives the first polynomial-time algorithm for tabular Markov Decision Processes (MDP) that enjoys a regret bound \emph{independent on the planning horizon}. Specifically, we consider tabular MDP with $S$ states, $A$ actions, a planning horizon $H$, total reward bounded by $1$, and the agent plays for $K$ episodes. We design an algorithm that achieves an $O\left(\mathrm{poly}(S,A,\log K)\sqrt{K}\right)$ regret in contrast to existing bounds which either has an additional $\mathrm{polylog}(H)$ dependency~\citep{zhang2020reinforcement} or has an exponential dependency on $S$~\citep{li2021settling}. Our result relies on a sequence of new structural lemmas establishing the approximation power, stability, and concentration property of stationary policies, which can have applications in other problems related to Markov chains.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.