Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Understanding and Mitigating the Dimensional Collapse of Graph Contrastive Learning: a Non-Maximum Removal Approach

Published 24 Mar 2022 in cs.LG and cs.AI | (2203.12821v2)

Abstract: Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations. GCL can generate graph-level embeddings by maximizing the Mutual Information (MI) between different augmented views of the same graph (positive pairs). However, the GCL is limited by dimensional collapse, i.e., embedding vectors only occupy a low-dimensional subspace. In this paper, we show that the smoothing effect of the graph pooling and the implicit regularization of the graph convolution are two causes of the dimensional collapse in GCL. To mitigate the above issue, we propose a non-maximum removal graph contrastive learning approach (nmrGCL), which removes "prominent'' dimensions (i.e., contribute most in similarity measurement) for positive pair in the pre-text task. Comprehensive experiments on various benchmark datasets are conducted to demonstrate the effectiveness of nmrGCL, and the results show that our model outperforms the state-of-the-art methods. Source code will be made publicly available.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.