Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unsupervised Simultaneous Learning for Camera Re-Localization and Depth Estimation from Video (2203.12804v1)

Published 24 Mar 2022 in cs.CV and cs.RO

Abstract: We present an unsupervised simultaneous learning framework for the task of monocular camera re-localization and depth estimation from unlabeled video sequences. Monocular camera re-localization refers to the task of estimating the absolute camera pose from an instance image in a known environment, which has been intensively studied for alternative localization in GPS-denied environments. In recent works, camera re-localization methods are trained via supervised learning from pairs of camera images and camera poses. In contrast to previous works, we propose a completely unsupervised learning framework for camera re-localization and depth estimation, requiring only monocular video sequences for training. In our framework, we train two networks that estimate the scene coordinates using directions and the depth map from each image which are then combined to estimate the camera pose. The networks can be trained through the minimization of loss functions based on our loop closed view synthesis. In experiments with the 7-scenes dataset, the proposed method outperformed the re-localization of the state-of-the-art visual SLAM, ORB-SLAM3. Our method also outperforms state-of-the-art monocular depth estimation in a trained environment.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.