Papers
Topics
Authors
Recent
2000 character limit reached

Pseudo Label Is Better Than Human Label (2203.12668v3)

Published 22 Mar 2022 in cs.LG and cs.CL

Abstract: State-of-the-art automatic speech recognition (ASR) systems are trained with tens of thousands of hours of labeled speech data. Human transcription is expensive and time consuming. Factors such as the quality and consistency of the transcription can greatly affect the performance of the ASR models trained with these data. In this paper, we show that we can train a strong teacher model to produce high quality pseudo labels by utilizing recent self-supervised and semi-supervised learning techniques. Specifically, we use JUST (Joint Unsupervised/Supervised Training) and iterative noisy student teacher training to train a 600 million parameter bi-directional teacher model. This model achieved 4.0% word error rate (WER) on a voice search task, 11.1% relatively better than a baseline. We further show that by using this strong teacher model to generate high-quality pseudo labels for training, we can achieve 13.6% relative WER reduction (5.9% to 5.1%) for a streaming model compared to using human labels.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com