Papers
Topics
Authors
Recent
2000 character limit reached

An L-DEIM Induced High Order Tensor Interpolatory Decomposition (2203.12491v3)

Published 23 Mar 2022 in math.NA and cs.NA

Abstract: This paper derives the CUR-type factorization for tensors in the Tucker format based on a new variant of the discrete empirical interpolation method known as L-DEIM. This novel sampling technique allows us to construct an efficient algorithm for computing the structure-preserving decomposition, which significantly reduces the computational cost. For large-scale datasets, we incorporate the random sampling technique with the L-DEIM procedure to further improve efficiency. Moreover, we propose randomized algorithms for computing a hybrid decomposition, which yield interpretable factorization and provide a smaller approximation error than the tensor CUR factorization. We provide comprehensive analysis of probabilistic errors associated with our proposed algorithms, and present numerical results that demonstrate the effectiveness of our methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.