Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Assessing Network Representations for Identifying Interdisciplinarity (2203.12455v2)

Published 23 Mar 2022 in cs.DL and cs.SI

Abstract: Many studies have sought to identify interdisciplinary research as a function of the diversity of disciplines identified in an article's references or citations. However, given the constant evolution of the scientific landscape, disciplinary boundaries are shifting and blurring, making it increasingly difficult to describe research within a strict taxonomy. In this work, we explore the potential for graph learning methods to learn embedded representations for research papers that encode their 'interdisciplinarity' in a citation network. This facilitates the identification of interdisciplinary research without the use of disciplinary categories. We evaluate these representations and their ability to identify interdisciplinary research, according to their utility in interdisciplinary citation prediction. We find that those representations which preserve structural equivalence in the citation graph are best able to predict distant, interdisciplinary interactions in the network, according to multiple definitions of citation distance.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.