Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Solving the Federated Edge Learning Participation Dilemma: A Truthful and Correlated Perspective (2203.12430v1)

Published 12 Feb 2022 in cs.NI

Abstract: An emerging computational paradigm, named federated edge learning (FEL), enables intelligent computing at the network edge with the feature of preserving data privacy for edge devices. Given their constrained resources, it becomes a great challenge to achieve high execution performance for FEL. Most of the state-of-the-arts concentrate on enhancing FEL from the perspective of system operation procedures, taking few precautions during the composition step of the FEL system. Though a few recent studies recognize the importance of FEL formation and propose server-centric device selection schemes, the impact of data sizes is largely overlooked. In this paper, we take advantage of game theory to depict the decision dilemma among edge devices regarding whether to participate in FEL or not given their heterogeneous sizes of local datasets. For realizing both the individual and global optimization, the server is employed to solve the participation dilemma, which requires accurate information collection for devices' local datasets. Hence, we utilize mechanism design to enable truthful information solicitation. With the help of correlated equilibrium, we derive a decision making strategy for devices from the global perspective, which can achieve the long-term stability and efficacy of FEL. For scalability consideration, we optimize the computational complexity of the basic solution to the polynomial level. Lastly, extensive experiments based on both real and synthetic data are conducted to evaluate our proposed mechanisms, with experimental results demonstrating the performance advantages.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.