Supporting Developers in Addressing Human-centric Issues in Mobile Apps (2203.12212v2)
Abstract: Failure to consider the characteristics, limitations, and abilities of diverse end-users during mobile apps development may lead to problems for end-users such as accessibility and usability issues. We refer to this class of problems as human-centric issues. Despite their importance, there is a limited understanding of the types of human-centric issues that are encountered by end-users and taken into account by the developers of mobile apps. In this paper, we examine what human-centric issues end-users report through Google App Store reviews, which human-centric issues are a topic of discussion for developers on GitHub, and whether end-users and developers discuss the same human-centric issues. We then investigate whether an automated tool might help detect such human-centric issues and whether developers would find such a tool useful. To do this, we conducted an empirical study by extracting and manually analysing a random sample of 1,200 app reviews and 1,200 issue comments from 12 diverse projects that exist on both Google App Store and GitHub. Our analysis led to a taxonomy of human-centric issues that categorises human-centric issues into three-high levels: App Usage, Inclusiveness, and User Reaction. We then developed machine learning and deep learning models that are promising in automatically identifying and classifying human-centric issues from app reviews and developer discussions. A survey of mobile app developers shows that the automated detection of human-centric issues has practical applications. Guided by our findings, we highlight some implications and possible future work to further understand and incorporate human-centric issues in mobile apps development.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.