Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Twin Weisfeiler-Lehman: High Expressive GNNs for Graph Classification (2203.11683v1)

Published 22 Mar 2022 in cs.LG

Abstract: The expressive power of message passing GNNs is upper-bounded by Weisfeiler-Lehman (WL) test. To achieve high expressive GNNs beyond WL test, we propose a novel graph isomorphism test method, namely Twin-WL, which simultaneously passes node labels and node identities rather than only passes node label as WL. The identity-passing mechanism encodes complete structure information of rooted subgraph, and thus Twin-WL can offer extra power beyond WL at distinguishing graph structures. Based on Twin-WL, we implement two Twin-GNNs for graph classification via defining readout function over rooted subgraph: one simply readouts the size of rooted subgraph and the other readouts rich structure information of subgraph following a GNN-style. We prove that the two Twin-GNNs both have higher expressive power than traditional message passing GNNs. Experiments also demonstrate the Twin-GNNs significantly outperform state-of-the-art methods at the task of graph classification.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube