Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Is Vanilla Policy Gradient Overlooked? Analyzing Deep Reinforcement Learning for Hanabi (2203.11656v1)

Published 22 Mar 2022 in cs.LG, cs.AI, and cs.MA

Abstract: In pursuit of enhanced multi-agent collaboration, we analyze several on-policy deep reinforcement learning algorithms in the recently published Hanabi benchmark. Our research suggests a perhaps counter-intuitive finding, where Proximal Policy Optimization (PPO) is outperformed by Vanilla Policy Gradient over multiple random seeds in a simplified environment of the multi-agent cooperative card game. In our analysis of this behavior we look into Hanabi-specific metrics and hypothesize a reason for PPO's plateau. In addition, we provide proofs for the maximum length of a perfect game (71 turns) and any game (89 turns). Our code can be found at: https://github.com/bramgrooten/DeepRL-for-Hanabi

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.