Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

HOP: History-and-Order Aware Pre-training for Vision-and-Language Navigation (2203.11591v1)

Published 22 Mar 2022 in cs.CV and cs.CL

Abstract: Pre-training has been adopted in a few of recent works for Vision-and-Language Navigation (VLN). However, previous pre-training methods for VLN either lack the ability to predict future actions or ignore the trajectory contexts, which are essential for a greedy navigation process. In this work, to promote the learning of spatio-temporal visual-textual correspondence as well as the agent's capability of decision making, we propose a novel history-and-order aware pre-training paradigm (HOP) with VLN-specific objectives that exploit the past observations and support future action prediction. Specifically, in addition to the commonly used Masked LLMing (MLM) and Trajectory-Instruction Matching (TIM), we design two proxy tasks to model temporal order information: Trajectory Order Modeling (TOM) and Group Order Modeling (GOM). Moreover, our navigation action prediction is also enhanced by introducing the task of Action Prediction with History (APH), which takes into account the history visual perceptions. Extensive experimental results on four downstream VLN tasks (R2R, REVERIE, NDH, RxR) demonstrate the effectiveness of our proposed method compared against several state-of-the-art agents.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.