Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-linear Embeddings in Hilbert Simplex Geometry (2203.11434v3)

Published 22 Mar 2022 in cs.LG

Abstract: A key technique of machine learning and computer vision is to embed discrete weighted graphs into continuous spaces for further downstream processing. Embedding discrete hierarchical structures in hyperbolic geometry has proven very successful since it was shown that any weighted tree can be embedded in that geometry with arbitrary low distortion. Various optimization methods for hyperbolic embeddings based on common models of hyperbolic geometry have been studied. In this paper, we consider Hilbert geometry for the standard simplex which is isometric to a vector space equipped with the variation polytope norm. We study the representation power of this Hilbert simplex geometry by embedding distance matrices of graphs. Our findings demonstrate that Hilbert simplex geometry is competitive to alternative geometries such as the Poincar\'e hyperbolic ball or the Euclidean geometry for embedding tasks while being fast and numerically robust.

Citations (5)

Summary

We haven't generated a summary for this paper yet.